Simplify and Reduce Test Code with AutoFixture

AutoFixture is a library that you can use alongside your testing framework to reduce the amount of boilerplate test code you need to write and thus improve your productivity.

At its core, AutoFixture helps you setup your tests by generating anonymous test data for you. This anonymous test data can be used to fulfil non-important boilerplate test data; this is test data that is required for the test to execute but whose value is unimportant.

Take the follow abbreviated test:

[Fact]
public void ManualCreation()
{
    // arrange

    Customer customer = new Customer()
    {
        CustomerName = "Amrit"
    };

    Order order = new Order(customer)
    {
        Id = 42,
        OrderDate = DateTime.Now,
        Items =
                      {
                          new OrderItem
                          {
                              ProductName = "Rubber ducks",
                              Quantity = 2
                          }
                      }
    };


    // act and assert phases...
}

Suppose the previous test code was only creating an Order (with associated Customer) just to fulfil some dependency and the actual Customer and OrderItems did not matter. In this case we could use AutoFixture to generate them for us.

AutoFixture can be installed via NuGet and once installed allows a Fixture instance to be instantiated. This Fixture object can then be used to generate anonymous test data and greatly simplify the arrange phase, as the following test shows:

[Fact]
public void AutoCreation()
{
    // arrange

    var fixture = new Fixture();

    Order order = fixture.Create<Order>();

    // act and assert phases...
}

If we were to debug this test we’d see the following values:

AutoFixture anonymous test data generation for complex object graphs

Notice in the preceding screenshot that AutoFixture has created the object graph for us, including the Customer and 3 OrderItem instances.

There’s a lot more to AutoFixture than just this simple example, for example you can combine with the AutoFixture.Xunit2 package to further reduce code:

[Theory, AutoData]
public void SubtractWhenZeroTest(int aPositiveNumber, Calculator sut)
{
    // Act
    sut.Subtract(aPositiveNumber);

    // Assert
    Assert.True(sut.Value < 0);
}

If you want to learn more about how AutoFixture can improve your productivity check out the docs or start watching for free  my AutoFixture Pluralsight course with a free trial:

SHARE:

Running xUnit.net Tests on Specific Threads for WPF and Other UI Tests

Sometimes when you write a test with xUnit.net (or other testing frameworks) you may run into problems if UI technologies are involved. This usually relates to the fact that the test must execute using a specific threading model such as single-threaded apartment (STA).

For example suppose you had a WPF app that you wanted to add tests for.

The XAML looks like:

<Window x:Class="WpfApp1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
        xmlns:local="clr-namespace:WpfApp1"
        mc:Ignorable="d"
        Title="MainWindow" Height="450" Width="800">
    <Grid>
        <TextBlock FontSize="42" Text="{Binding Path=Greeting}" />
    </Grid>
</Window>

And the simple quick and dirty view model class looks like:

namespace WpfApp1
{
    public class MainWindowViewModel
    {
        public string Greeting { get; set; }
    }
}

And  in the MainWindow constructor we set the data context:

public MainWindow()
{
    InitializeComponent();

    var vm = new MainWindowViewModel { Greeting = "Hi there!" };
    DataContext = vm;
}

(This is a very simple demo code with no change notifications etc.)

If you wanted to write an xUnit.net test that instantiates an instance of MainWindow, such as:

[Fact]
[UseReporter(typeof(DiffReporter))]
public void RenderWithViewModel()
{
    var sut = new MainWindow();
    var vm = new MainWindowViewModel { Greeting = "Good day!" };
    sut.DataContext = vm;

    // Test rendering, e.g. using Approval Tests
    WpfApprovals.Verify(sut);
}

If you run this, the test will fail with: System.InvalidOperationException : The calling thread must be STA, because many UI components require this.

Note: this test is using Approval Tests (e.g. [UseReporter(typeof(DiffReporter))]) to render the UI into an image file for approval, you can learn more about Approval Tests with my Pluralsight course. Approval Tests is no related to the threading model requirements.

To enable this test to run you need to instruct xUnit to run the test using an apartment model process (“STA thread”).

Luckily Andrew Arnott has done all the hard work for us and created some custom xUnit.net attributes that allow us to specify what thread/synchronization context to use for a test.

Once the Xunit.StaFact NuGet package has been installed into the test project you can replace the standard [Fact] attribute with [StaFact]. The test will now execute without error:

using ApprovalTests.Reporters;
using ApprovalTests.Wpf;
using Xunit;

namespace WpfApp1.Tests
{
    public class MainWindowShould
    {
        [StaFact]
        [UseReporter(typeof(DiffReporter))]
        public void RenderWithViewModel()
        {
            var sut = new MainWindow();
            var vm = new MainWindowViewModel { Greeting = "Good day!" };
            sut.DataContext = vm;

            // Test rendering, e.g. using Approval Tests
            WpfApprovals.Verify(sut);
        }
    }
}

There are also a number of other attributes such as [WinFormsFact] for use with Windows Forms apps, check out the entire list of attributes in the docs.

If you use this library make sure to say a thankyou to Andrew on Twitter  :)

SHARE:

Pretty Method Display in xUnit.net

One little-known feature of the xUnit.net testing framework is the ability to write test method names in a specific way and then have them converted to a ‘pretty’ version for example in Visual Studio Test Explorer.

Take the following test method:

using ClassLibrary1;
using Xunit;

namespace XUnitTestProject2
{
    public class CalculatorShould
    {
        [Fact]
        public void Add2PositiveNumbers()
        {
            var sut = new Calculator();

            sut.Add(1);
            sut.Add(1);

            Assert.Equal(2, sut.Value);
        }
    }
}

By default, this will look like the following screenshot in Visual Studio Test Explorer:

Default xUnit.net Test Method Name Display

The first thing that can be modified to to simplify the test method name display to only display the test method name and not the preceding namespace and class name, for example “XUnitTestProject2.CalculatorShould.Add2PositiveNumbers” becomes more simply “Add2PositiveNumbers” by making a simple configuration change.

Displaying Only Test Method Names in xUnit.net Tests

To control the rendering of method names in xUnit.net, the first thing to do is add a new file called “xunit.runner.json” to the root of the test project and set the Copy To Output Directory property to Copy if newer. This will make this file copy to the output bin directory. Once this is done, if you open the project file you should see something like:

<ItemGroup>
  <None Update="xunit.runner.json">
    <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
  </None>
</ItemGroup>

Next, modify the json file to the following:

{
  "$schema": "https://xunit.net/schema/current/xunit.runner.schema.json",
   "methodDisplay": "method"
}

Notice in the preceding json configuration the methodDisplay has been set to “method”, this will prevent the namespace and class being prepended to the method name in Test Explorer.

Now if you head back to Test Explorer you should see the following:

Method name only display in xUnit.net tests

Enabling Pretty Method Names in xUnit.net

In addition to shortening test method name display we can also make use of xUnit.net’s “pretty method display”.

To enable this feature, modify the json configuration file and add the "methodDisplayOptions": "all" configuration as follows:

{
  "$schema": "https://xunit.net/schema/current/xunit.runner.schema.json",
  "methodDisplay": "method",
  "methodDisplayOptions": "all"
}

Now the previous test can be renamed to “Add_2_positive_numbers” as follows:

[Fact]
public void Add_2_positive_numbers()
{
    var sut = new Calculator();

    sut.Add(1);
    sut.Add(1);

    Assert.Equal(2, sut.Value);
}

In test explorer this test method will show up as “Add 2 positive numbers” as the following screenshot shows:

xUnit.net pretty method display names

You can use other items in the test method name, for example you can use the monikers eq, ne, lt, le, gt, ge that get replaced with =, !=, <, <=, >, >= respectively, for example a test name of “Have_a_value_eq_0_when_multiplied_by_zero” would be displayed as “Have a value = 0 when multiplied by zero”. Here the eq has been replaced with =.

You can also use ASCII or Unicode escape sequences, for example the test name “Divide_by_U00BD” gets displayed as “Divide by ½” and the test “Email_address_should_only_contain_a_single_U0040” gets displayed as “Email address should only contain a single @”, or “The_U2211_of_1U002C_2_and_3_should_be_6” becomes “The ∑ of 1, 2 and 3 should be 6”:

xUnit Pretty methods

You could also combine the "methodDisplay": "classAndMethod" to create something like  and the following:

namespace Given_a_cleared_calculator
{
    public class when_a_number_gt_0_is_added
    {
        [Fact]
        public void then_the_value_should_be_gt_0()
        {
            // etc.
        }

        [Fact]
        public void then_the_value_should_eq_the_one_added()
        {
            // etc.
        }
    }
}

This would produce the following tests in Test Explorer:

xUnit.net Pretty Display Names

If you want to learn more about writing tests with xUnit.net check out my Pluralsight course today.

SHARE:

Learning xUnit .NET Unit Testing the Easy Way

If you’re getting started with .NET or you’ve done some testing but want to know how to put it all together and also learn some additional tools then the new xUnit.net testing path from Pluralsight may be of interest (you can also get started viewing for free with a trial).

The path currently has the following individual courses (including some of my courses) taking you right from the basics of xUnit.net to more advanced techniques:

  • Testing .NET Code with xUnit.net: Getting Started
  • Mocking in .NET Core Unit Tests with Moq: Getting Started
  • Creating Maintainable Contexts for Automated Testing
  • Writing Testable Code
  • Building a Pragmatic Unit Test Suite
  • Improving Unit Tests with Fluent Assertions
  • Better .NET Unit Tests with AutoFixture: Get Started
  • Approval Tests for .NET

If you’re already skilled with xUnit.net you may find some of the other courses in the path useful.

SHARE:

Mocking HttpRequest Body Content When Testing Azure Function HTTP Trigger Functions

When creating Azure Functions that are triggered by an HTTP request, you may want to write unit tests for the function Run method. These unit tests can be executed outside of the Azure Functions runtime, just like testing regular methods.

If your HTTP-triggered function takes as the function input an HttpRequest (as opposed to an automatically JSON-deserialized class) you may need to provide request data in your test.

As an example, consider the following code snippet that defines an HTTP-triggered function.

[FunctionName("Portfolio")]
[return: Queue("deposit-requests")]
public static async Task<DepositRequest> Run(
    [HttpTrigger(AuthorizationLevel.Function, "post", Route = "portfolio/{investorId}")]HttpRequest req,
    [Table("Portfolio", InvestorType.Individual, "{investorId}")] Investor investor,
    string investorId,
    ILogger log)
{
    log.LogInformation($"C# HTTP trigger function processed a request.");

    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

    log.LogInformation($"Request body: {requestBody}");

    var deposit = JsonConvert.DeserializeObject<Deposit>(requestBody);

    // etc.
}

If the  the preceding code is executed in a test, some content needs to be provided to be used when accessing req.Body. To do this using Moq a mock HttpRequest can be created that returns a specified Stream instance for req.Body.

If you want to create a request body that contains a JSON payload, you can use the following helper method in your tests:

private static Mock<HttpRequest> CreateMockRequest(object body)
{            
    var ms = new MemoryStream();
    var sw = new StreamWriter(ms);

    var json = JsonConvert.SerializeObject(body);

    sw.Write(json);
    sw.Flush();

    ms.Position = 0;

    var mockRequest = new Mock<HttpRequest>();
    mockRequest.Setup(x => x.Body).Returns(ms);

    return mockRequest;
}

As an example of using this method in a test:

[Fact]
public async Task ReturnCorrectDepositInformation()
{
    var deposit = new Deposit { Amount = 42 };
    var investor = new Investor { };

    Mock<HttpRequest> mockRequest = CreateMockRequest(deposit);

    DepositRequest result = await Portfolio.Run(mockRequest.Object, investor, "42", new Mock<ILogger>().Object);

    Assert.Equal(42, result.Amount);
    Assert.Same(investor, result.Investor);
}

When the preceding test is run, the function run method will get the contents of the memory stream that contains the JSON.

To learn more about using Moq to create/configure/use mock objects check out my Mocking in .NET Core Unit Tests with Moq: Getting Started Pluralsight course. or to learn more about MemoryStream and how to work with streams in C# check out my Working with Files and Streams course.

SHARE:

Setting Up Mock ref Return Values in Moq

I recently received a message related to my Mocking in .NET Core Unit Tests with Moq: Getting Started Pluralsight course asking how to set the values of ref parameters.

As a (somewhat contrived) example, consider the following code:

public interface IParser
{
    bool TryParse(string value, ref int output);
}

public class Thing
{
    private readonly IParser _parser;

    public Thing(IParser parser)
    {
        _parser = parser;
    }

    public string ConvertStringIntToHex(string number)
    {
        int i = 0;

        if (_parser.TryParse(number, ref i))
        {
            return i.ToString("X");
        }

        throw new ArgumentException("The value supplied cannot be parsed into an int.", nameof(number));
    }
}

The Thing class requires an IParser to be able to work. In a test, a mocked version of an IParser can be created by Moq as the following initial test demonstrates:

[Fact]
public void ReturnHex_Fail_NoSetup()
{
    var mockParser = new Mock<IParser>();

    var sut = new Thing(mockParser.Object);

    var result = sut.ConvertStringIntToHex("255"); // fails with ArgumentException

    Assert.Equal("FF", result);
}

The preceding test will fail however because the mocked TryParse has not been configured correctly, for example specifying that the method should return true.

The following modified test attempts to fix this:

[Fact]
public void ReturnHex_Fail_NoRefValueSetup()
{
    var mockParser = new Mock<IParser>();
    mockParser.Setup(x => x.TryParse(It.IsAny<string>(), ref It.Ref<int>.IsAny))
              .Returns(true);

    var sut = new Thing(mockParser.Object);

    var result = sut.ConvertStringIntToHex("255");

    Assert.Equal("FF", result); // Fails, actual result == 0
}

In the preceding code, the return value is being set, but nowhere is the ref int output “return value” being configured.

In the following test the Callback method is used to set the ref value. To be able to do this, a delegate must first be defined that matches the signature of the mocked method that contains the ref parameter. Once this delegate is defined it can be used in the Callback method as the following code demonstrates:

// Define a delegate that can be used to set the ref value in the mocked TryParse method 
delegate void MockTryParseCallback(string number, ref int output);

[Fact]
public void ReturnHex()
{
    var mockParser = new Mock<IParser>();
    mockParser.Setup(x => x.TryParse("255", ref It.Ref<int>.IsAny)) // When the TryParse method is called with 255
              .Callback(new MockTryParseCallback((string s, ref int output) => output = 255)) // Execute callback delegate and set the ref value
              .Returns(true); // Return true as the result of the TryParse method

    var sut = new Thing(mockParser.Object);

    var result = sut.ConvertStringIntToHex("255");

    Assert.Equal("FF", result);
}

If you’ve never used Moq or want to learn more about it check out the official Moq quickstart  or head over to my Pluralsight course.

SHARE:

Unit Testing C# File Access Code with System.IO.Abstractions

It can be difficult  to write unit tests for code that accesses the file system.

It’s possible to write integration tests that read in an actual file from the file system, do some processing, and check the resultant output file (or result) for correctness. There are a number of potential problems with these types of integration tests including the potential for them to more run slowly (real IO access overheads), additional test file management/setup code, etc. (this does not mean that some integration tests wouldn’t be useful however).

The System.IO.Abstractions NuGet package can help to make file access code more testable. This package provides a layer of abstraction over the file system that is API-compatible with existing code.

Take the following code as an example:

using System.IO;
namespace ConsoleApp1
{
    public class FileProcessorNotTestable
    {
        public void ConvertFirstLineToUpper(string inputFilePath)
        {
            string outputFilePath = Path.ChangeExtension(inputFilePath, ".out.txt");

            using (StreamReader inputReader = File.OpenText(inputFilePath))
            using (StreamWriter outputWriter = File.CreateText(outputFilePath))
            {
                bool isFirstLine = true;

                while (!inputReader.EndOfStream)
                {
                    string line = inputReader.ReadLine();

                    if (isFirstLine)
                    {
                        line = line.ToUpperInvariant();
                        isFirstLine = false;
                    }

                    outputWriter.WriteLine(line);
                }
            }
        }
    }
}

The preceding code opens a text file, and writes it to a new output file, but with the first line converted to uppercase.

This class is not easy to unit test however, it is tightly coupled to the physical file system with the calls to File.OpenText and File.CreateText.

Once the System.IO.Abstractions NuGet package is installed, the class can be refactored as follows:

using System.IO;
using System.IO.Abstractions;

namespace ConsoleApp1
{
    public class FileProcessorTestable
    {
        private readonly IFileSystem _fileSystem;

        public FileProcessorTestable() : this (new FileSystem()) {}

        public FileProcessorTestable(IFileSystem fileSystem)
        {
            _fileSystem = fileSystem;
        }

        public void ConvertFirstLineToUpper(string inputFilePath)
        {
            string outputFilePath = Path.ChangeExtension(inputFilePath, ".out.txt");

            using (StreamReader inputReader = _fileSystem.File.OpenText(inputFilePath))
            using (StreamWriter outputWriter = _fileSystem.File.CreateText(outputFilePath))
            {
                bool isFirstLine = true;

                while (!inputReader.EndOfStream)
                {
                    string line = inputReader.ReadLine();

                    if (isFirstLine)
                    {
                        line = line.ToUpperInvariant();
                        isFirstLine = false;
                    }

                    outputWriter.WriteLine(line);
                }
            }
        }
    }
}

The key things to notice in the preceding code is the ability to pass in an IFileSystem as a constructor parameter. The calls to File.OpenText and File.CreateText are now redirected to _fileSystem.File.OpenText and _fileSystem.File.CreateText  respectively.

If the parameterless constructor is used (e.g. in production at runtime) an instance of FileSystem will be used, however at test time, a mock IFileSystem can be supplied.

Handily, the System.IO.Abstractions.TestingHelpers NuGet package provides a pre-built mock file system that can be used in unit tests, as the following simple test demonstrates:

using System.IO.Abstractions.TestingHelpers;
using Xunit;

namespace XUnitTestProject1
{
    public class FileProcessorTestableShould
    {
        [Fact]
        public void ConvertFirstLine()
        {
            var mockFileSystem = new MockFileSystem();

            var mockInputFile = new MockFileData("line1\nline2\nline3");

            mockFileSystem.AddFile(@"C:\temp\in.txt", mockInputFile);

            var sut = new FileProcessorTestable(mockFileSystem);
            sut.ConvertFirstLineToUpper(@"C:\temp\in.txt");

            MockFileData mockOutputFile = mockFileSystem.GetFile(@"C:\temp\in.out.txt");

            string[] outputLines = mockOutputFile.TextContents.SplitLines();

            Assert.Equal("LINE1", outputLines[0]);
            Assert.Equal("line2", outputLines[1]);
            Assert.Equal("line3", outputLines[2]);
        }
    }
}

To see this in action or to learn more about file access, check out my Working with Files and Streams in C# Pluralsight course.

SHARE:

Lifelike Test Data Generation with Bogus

Bogus is a lovely library from Brian Chavez to use in automated tests to automatically generate test data of different kinds.

As an example suppose the following class is involved in a unit test:

public class Review
{
    public int Id { get; set; }
    public string Title { get; set; }
    public string Body { get; set; }
    public int Rating { get; set; }
    public DateTimeOffset Created { get; set; }

    public override string ToString()
    {
        return $"{Id} '{Title}'";
    }
}

In a test, a Review instance may need properties populating with values. This could be done manually, for example to check the ToString() implementation:

[Fact]
public void BeRepresentedAsAString()
{
    var sut = new Review
    {
        Id = 42,
        Title = "blah blah"
    };

    Assert.Equal("42 'blah blah'", sut.ToString());
}

Notice in the preceding test, the actual values and title don’t really matter, only the fact that they’re joined as part of the ToString() call. In this example the values for Id and Title could be considered anonymous variable / values in that we don’t really care about them.

The following test uses the Bogus NuGet package and uses its non-fluent facade syntax:

[Fact]
public void BeRepresentedAsAString_BogusFacadeSyntax()
{
    var faker = new Faker("en"); // default en

    var sut = new Review
    {
        Id = faker.Random.Number(),
        Title = faker.Random.String()
    };

    Assert.Equal($"{sut.Id} '{sut.Title}'", sut.ToString());
}

Bogus also has a powerful fluent syntax to define what a test object will look like. To use the fluent version, a Faker<T> instance is created where T is the test object to be configured and created, for example:

[Fact]
public void BeRepresentedAsAString_BogusFluentSyntax()
{
    var reviewFaker = new Faker<Review>()
        .RuleFor(x => x.Id, f => f.Random.Number(1, 10))
        .RuleFor(x => x.Title, f => f.Lorem.Sentence());

    var sut = reviewFaker.Generate(); 

    Assert.Equal($"{sut.Id} '{sut.Title}'", sut.ToString());
}

The first argument to the RuleFor() methods allows the property of the Review object to be selected and the second argument specifies how the property value should be generated. There is a huge range of test data types supported. In the preceding code the Random API is used as well as the Lorem API.

Some examples of the types of auto generated data include:

  • Addresses: ZipCode, City, Country, Latitude, etc.
  • Commerce: Department name, ProductName, ProductAdjective, Price, etc.
  • Company: CompanyName, CatchPhrase, Bs, etc.
  • Date: Past, Soon, Between, etc.
  • Finance: Account number, TransactionType, Currency, CreditCardNumber, etc.
  • Image URL: Random image, Animals image, Nature image, etc.
  • Internet: Email, DomainName, Ipv6, Password, etc.
  • Lorem: single word, Words, Sentence, Paragraphs, etc.
  • Name: FirstName, LastName, etc.
  • Rant: Random user review, etc.
  • System: FileName, MimeType, FileExt, etc.

Some of the random generated values are quite entertaining, for example Rant.Review() may produce "My co-worker Fate has one of these. He says it looks tall."; Company.Bs() may produce "transition cross-media users", and Company.CatchPhrase() may produce "Face to face object-oriented focus group".

Bogus configuration is quite powerful and allows fairly complex setup as the following code demonstrates:

[Fact]
public void CalculateAverageRatingWhenMultipleReviews()
{
    int rating = 0;

    var reviewFaker = new Faker<Review>()
        .RuleFor(x => x.Id, f => f.Random.Number(1, 10))
        .RuleFor(x => x.Rating, f => rating++);

    var productFaker = new Faker<Product>()
        .RuleFor(x => x.PricePerUnit, f => f.Finance.Amount())
        .RuleFor(x => x.Description, f => f.WaffleText(3))
        .FinishWith((f, x) =>
            {
                reviewFaker.Generate(3).ForEach(r => x.Reviews.Add(r));
            });

    var sut = productFaker.Generate();

    Assert.Equal(1, sut.AverageRating); // (0 + 1 + 2) / 3
}

The WaffleText() API is provided by one of the extensions to Bogus (WaffleGenerator.Bogus) that produces inane looking waffle text such as the following:

The Quality Of Hypothetical Aesthetic

"The parallel personal hardware cannot explain all the problems in maximizing the efficacy of any fundamental dichotomies of the logical psychic principle. Generally the requirements of unequivocal reciprocal individuality is strictly significant. On the other hand the characteristic organizational change reinforces the weaknesses in the evolution of metaphysical terminology over a given time limit. The objective of the explicit heuristic discordance is to delineate the truly global on-going flexibility or the preliminary qualification limit. A priority should be established based on a combination of functional baseline and inevitability of amelioration The Quality Of Hypothetical Aesthetic"

 - Michael Stringer in The Journal of the Proactive Directive Dichotomy (20174U)

structure plan.

To make the main points more explicit, it is fair to say that;
  * the value of the optical continuous reconstruction is reciprocated by what should be termed the sanctioned major issue.
  * The core drivers poses problems and challenges for both the heuristic non-referent spirituality and any discrete or Philosophical configuration mode.
  * an anticipation of the effects of any interpersonal fragmentation reinforces the weaknesses in the explicit deterministic service. This may be due to a lack of a doctrine of the interpersonal quality..
  * any significant enhancements in the strategic plan probably expresses the strategic personal theme. This trend may dissipate due to the personal milieu.

 firm assumptions about ideal major monologism evinces the universe of attitude.

The Flexible Implicit Aspiration.

Within current constraints on manpower resources, any consideration of the lessons learnt can fully utilize what should be termed the two-phase multi-media program.

For example, the assertion of the importance of the integration of doctrine of the prime remediation with strategic initiatives cannot be shown to be relevant. This is in contrast to the strategic fit.

To learn more about Bogus head over to the documentation.

SHARE:

Testing for Thrown Exceptions in xUnit.net

When writing tests it is sometimes useful to check that the correct exceptions are thrown at the expected time.

When using xUnit.net there are a number of ways to accomplish this.

As an example consider the following simple class:

public class TemperatureSensor
{
    bool _isInitialized;

    public void Initialize()
    {
        // Initialize hardware interface
        _isInitialized = true;
    }

    public int ReadCurrentTemperature()
    {
        if (!_isInitialized)
        {
            throw new InvalidOperationException("Cannot read temperature before initializing.");
        }

        // Read hardware temp
        return 42; // Simulate for demo code purposes
    }        
}

The first test we could write against the preceding class is to check the “happy path”:

[Fact]
public void ReadTemperature()
{
    var sut = new TemperatureSensor();

    sut.Initialize();

    var temperature = sut.ReadCurrentTemperature();

    Assert.Equal(42, temperature);
}

Next a test could be written to check that if the temperature is read before initializing the sensor, an exception of type InvalidOperationException is thrown. To do this the xUnit.net Assert.Throws method can be used. When using this method the generic type parameter indicates the type of expected exception and the method parameter takes an action that should cause this exception to be thrown, for example:

[Fact]
public void ErrorIfReadingBeforeInitialized()
{
    var sut = new TemperatureSensor();

    Assert.Throws<InvalidOperationException>(() => sut.ReadCurrentTemperature());
}

In the preceding test, if an InvalidOperationException is not thrown when the ReadCurrentTemperature method is called the test will fail.

The thrown exception can also be captured in a variable to make further asserts against the exception property values, for example:

[Fact]
public void ErrorIfReadingBeforeInitialized_CaptureExDemo()
{
    var sut = new TemperatureSensor();

    var ex = Assert.Throws<InvalidOperationException>(() => sut.ReadCurrentTemperature());

    Assert.Equal("Cannot read temperature before initializing.", ex.Message);
}

The Assert.Throws method expects the exact type of exception and not derived exceptions. In the case where you want to also allow derived exceptions, the Assert.ThrowsAny method can be used.

Similar exception testing features also exist in MSTest and NUnit frameworks.

To learn more about using exceptions to handle errors in C#, check out my Error Handling in C# with Exceptions Pluralsight course.

SHARE:

Getting Started Testing .NET Core Code with xUnit.net

xUnit.net is a testing framework that can be used to write automated tests for .NET (full) framework and also .NET Core.

To get started, first create a .NET Core application, in the following example a .NET Core console app.

Creating a .NET core console project

A testing project can now be added to the solution:

Adding an xUnit test project in Visual Studio 2017

This test project will come pre-configured with the relevant NuGet packages installed to start writing test code, though you may want to update the pre-configured packages to the newest NuGet versions.

The xUnit Test Project template will also create the following default test class:

using System;
using Xunit;

namespace ConsoleCalculator.Tests
{
    public class UnitTest1
    {
        [Fact]
        public void Test1()
        {

        }
    }
}

Notice in the preceding code, the Test1 method is decorated with the [Fact] attribute. This is an xUnit.net attribute that tells a test runner that it should execute the method, treat it as a test, and report on if the test passed or not.

Next add a project reference from the test project to the project that contains the code that is to be tested, this gives the test project access to the production code.

In the production project, the following class can be added:

namespace ConsoleCalculator
{
    public class Calculator
    {
        public int Add(int a, int b)
        {            
            return a + b;
        }
    }
}

Now the test class can be renamed (for example to “CalculatorTests”) and the test method changed to create a test:

using Xunit;

namespace ConsoleCalculator.Tests
{
    public class CalculatorTests
    {
        [Fact]
        public void ShouldAddTwoNumbers()
        {
            Calculator calculator = new Calculator();

            int result = calculator.Add(7, 3);

            Assert.Equal(10, result);
        }
    }
}

In the preceding code, once again the [Fact] attribute is being used, then the thing being tested is created (the Calculator class instance). The next step is to perform some kind of action on the thing being tested, in this example calling the Add method. The final step is to signal to the test runner if the test has passed or not, this is done by using one of the many xUnit.net Assert methods; in the preceding code the Assert.Equal method is being used. The first parameter is the expected value of 10, the second parameter is the actual value produced by the code being tested. So if  result is 10 the test will pass, otherwise it will fail.

One way to execute tests is to use Visual Studio’s Test Explorer which can be found under the Test –> Windows –> Test Explorer menu item. Once the test project is built, the test will show up and can be executed as the following screenshot shows:

Running xUnit tests in Visual Studio Test Explorer

To learn more about how to get started testing .NET Core code check out my Testing .NET Core Code with xUnit.net: Getting Started Pluralsight course or check out the docs.

SHARE: