Returning HTTP Status Codes from Azure Functions

(This post refers to Azure Functions v2)

When creating HTTP-triggered Azure Functions there are a number of ways to indicate results back to the calling client.

Returning HTTP Status Codes Manually

To return a specific status code to the client you can create an instance of one of the …Result classes and return that from the function body.

The following example returns an instance of an OkResult or a BadRequestResult:

[FunctionName("AddActor1")]
public static async Task<IActionResult> AddActor1(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
    dynamic data = JsonConvert.DeserializeObject(requestBody);

    string name = data.actorName; // get name from dynamic/JSON object

    if (name == null)
    {
        // Return a 400 bad request  result to the client
        return new BadRequestResult();
    }

    // Do some processing
    char firstLetter = name[0];

    // Return a 200 OK to the client
    return new OkResult();                
}

If you wanted to provide additional success/failure information you could use the OkObjectResult and BadRequestObjectResult classes instead, these allow you to provide additional contextual information to the client:

[FunctionName("AddActor2")]
public static async Task<IActionResult> AddActor2(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
    dynamic data = JsonConvert.DeserializeObject(requestBody);

    string name = data.actorName; // get name from dynamic/JSON object

    if (name == null)
    {
        // Return a 400 bad request result to the client with additional information
        return new BadRequestObjectResult("Please pass an actorName in the request body");
    }

    // Do some processing
    char firstLetter = name[0];

    // Return a 200 OK to the client with additional information
    return new OkObjectResult($"Actor {name} was added");
}

Automatically Returning Status Codes

In addition to manually returning status code instances, you can let the functions runtime take care of this for you.

For example, the following code will automatically return a “204 no content” if the function executes without throwing an exception, or a “500 internal server error” if an exception was thrown:

[FunctionName("AddActor3")]
public static async Task AddActor3(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
    dynamic data = JsonConvert.DeserializeObject(requestBody);

    string name = data.actorName; // get name from dynamic/JSON object

    // Do some processing
    char firstLetter = name[0]; // 500 internal server error if name is null

    // Auto return a 204 no content if no exception was thrown
}

In the preceding code, if the client fails to provide a actorName in the JSON, rather then getting a more helpful “400 bad request” (with optional additional message), they instead get a less useful “500 internal server error” status code and they have no idea what may have gone wrong or how to resolve it.

In this way, automatic status codes can be helpful if you want to write less code or perhaps use the return value of the function in a binding as in the following example:

[FunctionName("AddActor4")]
[return: Queue("new-actor-first-letter")]
public static async Task<string> AddActor4(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
    dynamic data = JsonConvert.DeserializeObject(requestBody);

    string name = data.actorName;

    return name.Substring(0,1); // add a new message to the queue containing the first letter of the name
}

Once again, the preceding function will return a 500 if there is an exception (e.g. actorName not provided in JSON) but will return a “200 OK” if no exception occurs (rather than the “204 no content” in the earlier example).

SHARE:

Different Ways to Parse Http Request Data in Http-triggered Azure Functions

(This post refers to Azure Functions v2)

There are different ways to access both the request data and also request metadata when a HTTP-triggered Azure Function is executed.

Getting Query String Data in Azure Functions

Suppose we have the following class (e.g. in table storage):

public class PhotoMetadata
{
    public string PartitionKey { get; set; }
    public string RowKey { get; set; }
    public string FileName { get; set; }
    public string Keywords { get; set; }
}

We could write an Azure Function triggered by a HTTP GET that returns an item from a database by a querystring parameter called “id”:

[FunctionName("GetPhotoMetadata")]
public static IActionResult GetPhotoMetadata(
    [HttpTrigger(AuthorizationLevel.Function, "get")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    string id = req.Query["id"];

    if (string.IsNullOrWhiteSpace(id))
    {
        return new NotFoundResult();
    }

    PhotoMetadata metadata = LoadFromDatabase(id);

    return new OkObjectResult(metadata);
}

In the preceding code, to access querystring parameters use req.Query and specify the key you are looking for, in this example “id”.

If there is no value in the incoming request, id will be null and we return a NotFoundResult (404).

Getting HTTP POST JSON Request Data in Azure Functions

When it comes to accessing POSTed data, there are a number of options.

Manually Convert JSON Request Strings

The first option is to take control of the process at a lower level and read the posted data from the request body and parse the JSON into a dynamic C# object. [If you’re not familiar with dynamic C# check out my Dynamic C# Fundamentals Pluralsight course]

First we define a model that will represent the posted data (we don’t want to use the PhotoMetadata class as we don’t want clients specifying partition and row keys):

public class PhotoMetadataAdditionRequest
{
    public string FileName { get; set; }
    public string Keywords { get; set; }
}

Next we can write a function that will parse this incoming data:

[FunctionName("AddPhotoMetadata")]
public static async Task<IActionResult> AddPhotoMetadata(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");


    log.LogInformation("You can get additional information about the request such as:");
    log.LogInformation($" length : {req.ContentLength}");
    log.LogInformation($" type   : {req.ContentType}");
    log.LogInformation($" https  : {req.IsHttps}");
    log.LogInformation($" host   : {req.Host}");


    // read the contents of the posted data into a string
    string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

    // use Json.NET to deserialize the posted JSON into a C# dynamic object
    dynamic data = JsonConvert.DeserializeObject(requestBody);

    // data validation omitted for demo purposes

    // extract data from the dynamic object into strongly typed object
    PhotoMetadata metadata = new PhotoMetadata
    {
        FileName = data.fileName, // notice the camel case (lowercase f)
        PartitionKey = "landscapes",
        RowKey = Guid.NewGuid().ToString(),
        Keywords = data.keywords // notice the camel case (lowercase k)
    };

    SaveToDatabase(metadata);

    return new OkObjectResult(metadata.RowKey);
}

Notice in the preceding code that you can also access information about the request such as req.ContentLength. Also note the lowercase f and k in data.fileName and data.keywords.

We can post the following JSON to the function:

{
    "fileName": "IMG0382435.jpg",
    "keywords": "landscape, sky, sunset"
}

Automatically Bind to Strongly Types POCOs in Azure HTTP Functions

You can also let the runtime auto-convert the POSTed JSON into a specified C# type:

[FunctionName("AddPhotoMetadata")]
public static IActionResult AddPhotoMetadata(
    [HttpTrigger(AuthorizationLevel.Function, "post")] PhotoMetadataAdditionRequest metadataAdditionRequest,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    log.LogInformation($" FileName : {metadataAdditionRequest.FileName}");
    log.LogInformation($" Keywords : { metadataAdditionRequest.Keywords}");

    PhotoMetadata metadata = new PhotoMetadata
    {
        FileName = metadataAdditionRequest.FileName,
        PartitionKey = "landscapes",
        RowKey = Guid.NewGuid().ToString(),
        Keywords = metadataAdditionRequest.Keywords
    };

    SaveToDatabase(metadata);

    return new OkObjectResult(metadata.RowKey);
}

In the preceding code, instead of binding to a HttpRequest object,  we bind to the PhotoMetadataAdditionRequest. Behind the scenes the JSON will be automatically deserialized into a PhotoMetadataAdditionRequest object.

Note that if you have malformed JSON you may get errors. For example if the “fileName” item in the JSON was misspelt as “file” then the FileName property of the PhotoMetadata would end up being set to null but the function body would still execute. If you had an int in the POCO but the POSTed JSON had a string (e.g. “hello”) instead of a number, then the runtime cannot bind a “hello” to an int – in this case your function body code will not even execute and you get an error from the runtime such as: “System.Private.CoreLib: Exception while executing function: AddPhotoMetadata. Microsoft.Azure.WebJobs.Host: Exception binding parameter 'metadataAdditionRequest'. System.Private.CoreLib: Input string was not in a correct format.” (and a 500 will status be returned to the client).

If you were handling things at a lower level (e.g. with the dynamic approach) you could perhaps provide a default value, do some extra logging, etc.

Accessing HTTP Request Metadata When Auto-binding to POCOs

If you want to do automatic binding and also want to get request metadata, you can simply add an extra parameter of type HttpRequest:

[FunctionName("AddPhotoMetadata")]
public static IActionResult AddPhotoMetadata(
    [HttpTrigger(AuthorizationLevel.Function, "post")] PhotoMetadataAdditionRequest metadataAdditionRequest,
    HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    log.LogInformation("You can get additional information about the request such as:");
    log.LogInformation($" length : {req.ContentLength}");
    log.LogInformation($" type   : {req.ContentType}");
    log.LogInformation($" https  : {req.IsHttps}");
    log.LogInformation($" host   : {req.Host}");

    log.LogInformation($" FileName : {metadataAdditionRequest.FileName}");
    log.LogInformation($" Keywords : { metadataAdditionRequest.Keywords}");

    PhotoMetadata metadata = new PhotoMetadata
    {
        FileName = metadataAdditionRequest.FileName,
        PartitionKey = "landscapes",
        RowKey = Guid.NewGuid().ToString(),
        Keywords = metadataAdditionRequest.Keywords
    };

    SaveToDatabase(metadata);

    return new OkObjectResult(metadata.RowKey);
}

Posting Form Data to Azure Functions

In addition to POSTing JSON content to an Azure Function, you can also POST form data and access the HttpRequest.Form property:

[FunctionName("AddPhotoMetadata")]
public static IActionResult AddPhotoMetadata(
    [HttpTrigger(AuthorizationLevel.Function, "post")] HttpRequest req,
    ILogger log)
{
    log.LogInformation("C# HTTP trigger function processed a request.");

    log.LogInformation("You can get additional information about the request such as:");
    log.LogInformation($" length : {req.ContentLength}");
    log.LogInformation($" type   : {req.ContentType}");
    log.LogInformation($" https  : {req.IsHttps}");
    log.LogInformation($" host   : {req.Host}");

    PhotoMetadata metadata = new PhotoMetadata
    {
        FileName = req.Form["fileName"], // access form data
        PartitionKey = "landscapes",
        RowKey = Guid.NewGuid().ToString(),
        Keywords = req.Form["keywords"]  // access form data
    };

    SaveToDatabase(metadata);

    return new OkObjectResult(metadata.RowKey);
}

SHARE:

Customizing C# Object Member Display During Debugging

In a previous post I wrote about Customising the Appearance of Debug Information in Visual Studio with the DebuggerDisplay Attribute. In addition to controlling the high level  debugger appearance of an object we can also exert a lot more control over how the object appears in the debugger by using the DebuggerTypeProxy attribute.

For example, suppose we have the following (somewhat arbitrary) class:

class DataTransfer
{
    public string Name { get; set; }
    public string ValueInHex { get; set; }
}

By default, in the debugger it would look like the following:

Default Debugger View

To customize the display of the object members, the DebuggerTypeProxy attribute can be applied.

The first step is to create a class to act as a display proxy. This class takes the original object as part of the constructor and then exposes the custom view via public properties.

For example, suppose that we wanted a decimal display of the hex number that originally is stored in a string property in the original DataTransfer object:

class DataTransferDebugView
{
    private readonly DataTransfer _data;

    public DataTransferDebugView(DataTransfer data)
    {
        _data = data;
    }

    public string NameUpper => _data.Name.ToUpperInvariant();
    public string ValueDecimal
    {
        get
        {
            bool isValidHex = int.TryParse(_data.ValueInHex, System.Globalization.NumberStyles.HexNumber, null, out var value);

            if (isValidHex)
            {
                return value.ToString();
            }

            return "INVALID HEX STRING";
        }
    }
}

Once this view object is defined, it can be selected by decorating the DataTransfer class with the DebuggerTypeProxy attribute as follows:

[DebuggerTypeProxy(typeof(DataTransferDebugView))]
class DataTransfer
{
    public string Name { get; set; }
    public string ValueInHex { get; set; }
}

Now in the debugger, the following can be seen:

Custom debug view showing hex value as a decimal

Also notice in the preceding image, that the original object view is available by expanding the Raw View section.

To learn more about C# attributes and even how to create your own custom ones, check out my C# Attributes: Power and Flexibility for Your Code course at Pluralsight.

SHARE:

MSTest V2

In the (relatively) distant past, MSTest was often used by organizations because it was provided by Microsoft “in the box” with Visual Studio/.NET. Because of this, some organizations trusted MSTest over open source testing frameworks such as NUnit. This was at a time when the .NET open source ecosystem was not as advanced as it is today and before Microsoft began open sourcing some of their own products.

Nowadays MSTest is cross-platform and open source and is known as MSTest V2, and as the documentation states: “is a fully supported, open source and cross-platform implementation of the MSTest test framework with which to write tests targeting .NET Framework, .NET Core and ASP.NET Core on Windows, Linux, and Mac.”.

MSTest V2 provides typical assert functionality such as asserting on the values of: strings, numbers, collections, thrown exceptions, etc. Also like other testing frameworks, MSTest V2 allows the customization of the test execution lifecycle such as the running of additional setup code before each test executes. The framework also allows the creation of data driven tests (a single test method executing  multiple times with different input test data) and the ability to extend the framework with custom asserts and custom test attributes.

You can find out more about MSTest V2 at the GitHub repository, the documentation, or check out my Pluralsight course: Automated Testing with MSTest V2.

SHARE:

Prevent Secrets From Accidentally Being Committed to Source Control in ASP.NET Core Apps

One problem when dealing with developer “secrets” in development is accidentally checking them into source control. These secrets could be connection strings to dev resources, user IDs, product keys, etc.

To help prevent this from accidentally happening, the secrets can be stored outside of the project tree/source control repository. This means that when the code is checked in, there will be no secrets in the repository.

Each developer will have their secrets stored outside of the project code. When the app is run, these secrets can be retrieved at runtime from outside the project structure.

One way to accomplish this in ASP.NET Core  projects is to make use of the Microsoft.Extensions.SecretManager.Tools NuGet package to allow use of the command line tool. (also if you are targeting .NET Core 1.x , install the Microsoft.Extensions.Configuration.UserSecrets NuGet package).

Setting Up User Secrets

After creating a new ASP.NET Core project, add a tools reference to the NuGet package to the project, this will add the following item in the project file:

<DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.Tools" Version="2.0.0" />

Build the project and then right click the project and you will see a new item called “Manage User Secrets” as the following screenshot shows:

Managing user secrets in Visual Studio

Clicking menu item will open a secrets.json file and also add an element named UserSecretsId to the project file. The content of this element is a GUID, the GUID is arbitrary but should be unique for each and every project.

<UserSecretsId>c83d8f04-8dba-4be4-8635-b5364f54e444</UserSecretsId>

User secrets will be stored in the secrets.json file which will be in %APPDATA%\Microsoft\UserSecrets\<user_secrets_id>\secrets.json on Windows or ~/.microsoft/usersecrets/<user_secrets_id>/secrets.json on Linux and macOS. Notice these paths contain the user_secrets_id that matches the GUID in the project file. In this way each project has a separate set of user secrets.

The secrets.json file contains key value pairs.

Managing User Secrets

User secrets can be added by editing the json file or by using the command line (from the project directory).

To list user secrets type: dotnet user-secrets list At the moment his will return “No secrets configured for this application.”

To set (add) a secret: dotnet user-secrets set "Id" "42"

The secrets.json file now contains the following:

{
  "Id": "42"
}

Other dotnet user-secrets  commands include:

  • clear - Deletes all the application secrets
  • list - Lists all the application secrets
  • remove - Removes the specified user secret
  • set - Sets the user secret to the specified value

Accessing User Secrets in Code

To retrieve users secrets, in the startup class, access the item by key, for example:

public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();

    var secretId = Configuration["Id"]; // returns 42
}

One thing to bear in mind is that secrets are not encrypted in the secrets.json file, as the documentation states: “The Secret Manager tool doesn't encrypt the stored secrets and shouldn't be treated as a trusted store. It's for development purposes only. The keys and values are stored in a JSON configuration file in the user profile directory.” & “You can store and protect Azure test and production secrets with the Azure Key Vault configuration provider.”

There’s a lot more information in the documentation and if you plan to use this tool you should read through it.

SHARE:

FeatureToggle v4 Released

Version 4 of FeatureToggle is now released. This release adds initial support for .NET Core.

Example code.

Release notes.

Breaking Changes:

  • Min framework now 4.6.1 / .NET Standard 1.4
  • Windows 8.n, Windows phone 8.n, Windows Phone Silverlight 8.n no longer supported
  • Namespace changes: most types needed for application developers are now under root FeatureToggle namespace
  • Types not usually required by client code moved to FeatureToggle.Internal
  • Windows UWP now supported explicitly from build 14393

.NET Core Limitations/Specifics

This is in some ways somewhat of an interim release, it is envisaged that when version 5 comes around the implementation will move to a pure .NET Standard implementation.

SHARE:

Getting Started Testing .NET Core Code with xUnit.net

xUnit.net is a testing framework that can be used to write automated tests for .NET (full) framework and also .NET Core.

To get started, first create a .NET Core application, in the following example a .NET Core console app.

Creating a .NET core console project

A testing project can now be added to the solution:

Adding an xUnit test project in Visual Studio 2017

This test project will come pre-configured with the relevant NuGet packages installed to start writing test code, though you may want to update the pre-configured packages to the newest NuGet versions.

The xUnit Test Project template will also create the following default test class:

using System;
using Xunit;

namespace ConsoleCalculator.Tests
{
    public class UnitTest1
    {
        [Fact]
        public void Test1()
        {

        }
    }
}

Notice in the preceding code, the Test1 method is decorated with the [Fact] attribute. This is an xUnit.net attribute that tells a test runner that it should execute the method, treat it as a test, and report on if the test passed or not.

Next add a project reference from the test project to the project that contains the code that is to be tested, this gives the test project access to the production code.

In the production project, the following class can be added:

namespace ConsoleCalculator
{
    public class Calculator
    {
        public int Add(int a, int b)
        {            
            return a + b;
        }
    }
}

Now the test class can be renamed (for example to “CalculatorTests”) and the test method changed to create a test:

using Xunit;

namespace ConsoleCalculator.Tests
{
    public class CalculatorTests
    {
        [Fact]
        public void ShouldAddTwoNumbers()
        {
            Calculator calculator = new Calculator();

            int result = calculator.Add(7, 3);

            Assert.Equal(10, result);
        }
    }
}

In the preceding code, once again the [Fact] attribute is being used, then the thing being tested is created (the Calculator class instance). The next step is to perform some kind of action on the thing being tested, in this example calling the Add method. The final step is to signal to the test runner if the test has passed or not, this is done by using one of the many xUnit.net Assert methods; in the preceding code the Assert.Equal method is being used. The first parameter is the expected value of 10, the second parameter is the actual value produced by the code being tested. So if  result is 10 the test will pass, otherwise it will fail.

One way to execute tests is to use Visual Studio’s Test Explorer which can be found under the Test –> Windows –> Test Explorer menu item. Once the test project is built, the test will show up and can be executed as the following screenshot shows:

Running xUnit tests in Visual Studio Test Explorer

To learn more about how to get started testing .NET Core code check out my Testing .NET Core Code with xUnit.net: Getting Started Pluralsight course or check out the docs.

SHARE:

Testing ASP.NET Core Controllers in Isolation with Mock Objects and Moq

In previous posts we saw how to get started testing ASP.NET Core MVC controllers and also how to use the Moq mocking library in .NET Core tests.

If there is code in controllers that needs testing, but the controller has a dependency, for example passed into the constructor, it may not make sense to use the real version of the dependency. In these cases Moq can be used to create a mock version of the dependency and pass it to the controller that needs testing.

As an example suppose we have the following controller code:

public class HomeController : Controller
{
    private readonly ISmsGateway _smsGateway;

    public HomeController(ISmsGateway smsGateway)
    {
        _smsGateway = smsGateway;
    }

    [HttpPost]
    [ValidateAntiForgeryToken]
    public IActionResult Send(SendSmsRequest request)
    {
        if (ModelState.IsValid)
        {
            var sendReceipt = _smsGateway.Send(request.PhoneNumber, request.Message);

            return Ok(sendReceipt);
        }

        return BadRequest();
    }
}

In the preceding code, the controller takes an ISmsGateway dependency as a constructor parameter. This dependency is later used in the the Send() method.

After installing Moq a mock SMS gateway can be created. Once created, Moq’s Setup() method can be used to determine what happens when the controller calls the mocked Send() method as the following code demonstrates:

[Fact]
public void ShouldSendOk()
{
    SendSmsRequest sendSmsRequest = new SendSmsRequest
    {
        PhoneNumber = "42",
        Message = "Hello"
    };

    Guid expectedSendReceipt = Guid.NewGuid();

    var mockSmsGateway = new Mock<ISmsGateway>();
    
    mockSmsGateway.Setup(x => x.Send(sendSmsRequest.PhoneNumber, sendSmsRequest.Message))
                  .Returns(expectedSendReceipt);

    var sut = new HomeController(mockSmsGateway.Object);
    
    IActionResult result = sut.Send(sendSmsRequest);

    var okObjectResult = Assert.IsType<OkObjectResult>(result);

    Assert.Equal(expectedSendReceipt, okObjectResult.Value);
}

We may also want to test that if there is a model binding error, then  no message is sent via the SMS gateway. The follow test code shows the use of the AddModelError() method to simulate an error, and the use of Moq’s Verify() method to check that the gateway’s Send() method was never called:

[Fact]
public void ShouldNotSendWhenModelError()
{
    SendSmsRequest sendSmsRequest = new SendSmsRequest
    {
        PhoneNumber = "42",
        Message = "Hello"
    };

    var mockSmsGateway = new Mock<ISmsGateway>();

    var sut = new HomeController(mockSmsGateway.Object);
    sut.ModelState.AddModelError("Simulated", "Model error");

    sut.Send(sendSmsRequest);

    mockSmsGateway.Verify(x => x.Send(It.IsAny<string>(), It.IsAny<string>()), Times.Never);
}

To learn more about using Moq to create/configure/use mock objects check out my Mocking in .NET Core Unit Tests with Moq: Getting Started Pluralsight course, and to learn how to get started testing ASP.NET Core MVC applications check out my ASP.NET Core MVC Testing Fundamentals Pluralsight course.

SHARE:

Testing ASP.NET Core MVC Controllers: Getting Started

When writing ASP.NET Core MVC web applications, you may want to test that controller actions behave in the expected way, for example that the action returns the correct result type (e.g. a ViewResult) or that the action behaves as expected when the model state is invalid.

To get started writing controller tests, first add a new .NET Core xUnit test project to the solution. This will create the test project along with requried xUnit.net NuGet packages. It will also add a default test class "UnitTest1.cs":

using System;
using Xunit;

namespace WebApplication1.Tests
{
    public class UnitTest1
    {
        [Fact]
        public void Test1()
        {
        }
    }
}

In the preceding code, notice the xUnit.net [Fact] attribute that marks the Test1 method as a test that should be executed by the test runner. One way to run tests in Visual Studio is to use the built-in Test Explorer which can be accessed via the menus: Test->Windows->Test Explorer.

If you build the project you will see the default test shown in the Test Explorer window:

Visual Studio Test Explorer

Adding a Controller Test

First, to get access to the controllers in the ASP.NET Core MVC application, add a reference to the web project from the test project. An instance of a controller can now be created in the test method:

var sut = new WebApplication1.Controllers.HomeController();

We can now call methods (actions) on the controller and verify the results. As a simple example, we can check that the Index method result is a view:

[Fact]
public void Test1()
{
    HomeController sut = new WebApplication1.Controllers.HomeController();

    IActionResult result = sut.Index();

    Assert.IsType<ViewResult>(result);
}

There are many different ways to test the results of controllers, including the ability to simulate model errors or using Moq mock objects as controller constructor dependencies.

The following code shows an excerpt from a controller and a test that examines the view's model that was returned:

public class PersonViewModel
{
    public string Name { get; set; }
}

public IActionResult Person()
{
    PersonViewModel viewModel = new PersonViewModel
    {
        Name = "Amrit"
    };

    return View(viewModel);
}
[Fact]
public void Test2()
{
    HomeController sut = new WebApplication1.Controllers.HomeController();

    IActionResult result = sut.Person();

    ViewResult viewResult = Assert.IsType<ViewResult>(result);

    PersonViewModel model = Assert.IsType<PersonViewModel>(viewResult.Model);

    Assert.Equal("Amrit", model.Name);
}

To learn how to get started testing ASP.NET Core MVC applications check out my ASP.NET Core MVC Testing Fundamentals Pluralsight course.

SHARE:

Mocking in .NET Core Tests with Moq

When writing automated tests it is sometimes useful to isolate the thing(s) being tested from other parts of the system. These ‘other’ parts may still need to be provided, and sometimes the real versions are too hard or cumbersome to use. In these instances “mocked” versions can be created and used.

A mock version of something is an object that can act like the real thing but can be controlled in test code.

Moq (pronounced “mok u” or “mock”) is a library available on NuGet that allows mock objects to be created in test code and it also supports .NET Core.

Moq allows the manipulation of mock objects in many ways, including setting mock methods to return specific values, setting up properties, and matching specific arguments when the thing being tested calls the mock object.

For example, the following code shows a class that requires a constructor dependency to be able to operate:

using System;

namespace Domain
{
    public interface IThingDependency
    {
        string JoinUpper(string a, string b);
        int Meaning { get; }
    }

    // "Real" implementation
    public class ThingDependency : IThingDependency
    {
        public string JoinUpper(string a, string b)
        {
            throw new NotImplementedException();
        }

        public int Meaning => throw new NotImplementedException();
    }

    // Class we want to test in isolation of ThingDependency
    public class ThingBeingTested
    {
        private readonly IThingDependency _thingDependency;

        public string FirstName { get; set; }
        public string LastName { get; set; }

        public ThingBeingTested(IThingDependency thingDependency)
        {
            _thingDependency = thingDependency;
        }

        public string X()
        {
            var fullName = _thingDependency.JoinUpper(FirstName, LastName);

            return $"{fullName} = {_thingDependency.Meaning}";
        }
    }
}

Without a mock object, to write a test we could use the real ThingDependency:

[Fact]
public void TestUsingRealDependency()
{
    var sut = new ThingBeingTested(new ThingDependency());

    // test code
}

To isolate the ThingBeingTested from the rest of the system, Moq can create a mock version of an IThingDependency:

[Fact]
public void TestUsingMockDependency()
{
    // create mock version
    var mockDependency = new Mock<IThingDependency>();

    // set up mock version's method
    mockDependency.Setup(x => x.JoinUpper(It.IsAny<string>(), It.IsAny<string>()))
                  .Returns("A B");

    // set up mock version's property
    mockDependency.Setup(x => x.Meaning)
                  .Returns(42);

    // create thing being tested with a mock dependency
    var sut = new ThingBeingTested(mockDependency.Object);

    var result = sut.X();

    Assert.Equal("A B = 42", result);
}

In the preceding code, the Setup() method is used to tell the mock how to behave when it is called by the ThingBeingTested.

Moq can also be used to test the correct interactions are occurring between the ThingBeingTested and the IThingDependency:

[Fact]
public void TestUsingMockDependencyUsingInteractionVerification()
{
    // create mock version
    var mockDependency = new Mock<IThingDependency>();

    // create thing being tested with a mock dependency
    var sut = new ThingBeingTested(mockDependency.Object)
    {
        FirstName = "Sarah",
        LastName = "Smith"
    };

    sut.X();

    // Assert that the JoinUpper method was called with Sarah Smith
    mockDependency.Verify(x => x.JoinUpper("Sarah", "Smith"), Times.Once);

    // Assert that the Meaning property was accessed once
    mockDependency.Verify(x => x.Meaning, Times.Once);
}

In the preceding code, the Verify method is used to check that the mock JoinUpper method is being called exactly once with the values “Sarah” and “Smith”. The test code is also expecting the method to be called exactly once.

Moq can be used to test in isolation other parts of applications such as ASP.NET Core MVC controllers, where the controller requires a dependency (such as an IFooRepository):

[Fact]
public void ContollerTest()
{            
    var mockDependency = new Mock<IFooRepository>();

    var sut = new HomeController(mockDependency.Object);
    
    // test code
}

To learn more about using Moq to create/configure/use mock objects check out my Mocking in .NET Core Unit Tests with Moq: Getting Started Pluralsight course.

To learn how to get started testing ASP.NET Core MVC applications check out my ASP.NET Core MVC Testing Fundamentals Pluralsight course.

SHARE: