New Pluralsight Course - Better .NET Unit Tests with AutoFixture

My new Pluralsight testing course was just released: Better .NET Unit Tests with AutoFixture: Get Started.

AutoFixture is an open source library that allows the simplification of automated .NET tests. It allows for the creation of “anonymous” test data. This is data that is required for the test to execute, but where the exact values are unimportant.

AutoFixture is not dependent upon any specific testing framework, so can be used with xUnit.net, NUnit, MSTest, etc. There are some additional extensions for specific testing frameworks such as xUnit.net that allow further reductions in unit test setup code.

For more info check out the GitHub site or the Pluralsight course.

If you like AutoFixture be sure to give open source thanks to Mark Seemann.

Using AutoFixture To Generate Anonymous Test Data in Web UI Automation With BDDfy and Seleno

I’m currently working on an AutoFixture Pluralsight course and it got me thinking about using it to generate anonymous test data when writing automated UI tests.

The basic premise is that in addition to using AutoFixture to generate unit test data, it can also be used to populate UI elements where the specific data values are unimportant.

If you are unfamiliar with BDDfy and Seleno, they are part of the TestStack project.

BDDfy allows tests to be written and to produce business readable documentation. Seleno allows the automation of web browsers using Selenium and strongly-typed page object models.

Example Scenario

Imagine that we have an (ASP.NET MVC) web site that allows the addition of members of the royal family.

image

If we wanted to test different king/queen names (but didn’t care about the Regnal number) we could start off by defining some strongly typed (Seleno) page object models:

public class HomePage : Page<AddRoyaltyModel>
{
    public CreatedPage CreateRoyalty(AddRoyaltyModel royal)
    {
        Input.Model(royal);

        return Navigate.To<CreatedPage>(By.Id("Create"));
    }
}

public class CreatedPage : Page
{
}

 

(all the examples in this post are fairly quick-and-dirty to demonstrate the AutoFixture involvement)

 

Next we can write some example in BDDfy (using xUnit.net as the test framework):

public class AddRoyaltyTests
{
    private HomePage _home;
    private CreatedPage _confirmationPage;
    public string Name { get; set; }
    public string Number { get; set; }

    [Fact]
    public void ShouldAddRoyaltiesWithDifferentNames()
    {
        this.Given(x => GivenIAmStartingANewRoyalAddition())
            .And("And I have entered <name> as the royalty name")
            .And("And I have entered <number> as the regnal number")
            .When(x => WhenIChooseToAddTheNewRoyal())
            .Then(x => ThenIShouldSeeAConfirmationOfTheNewRoyalHavingBeenAdded())
            .WithExamples(new ExampleTable("name", "number")
                          {
                              {"Richard", "I"},
                              {"Henry", "I"},
                              {"Elizabeth", "I"}
                          })
            .BDDfy();            
    }



    private void GivenIAmStartingANewRoyalAddition()
    {
        _home = Host.Instance.NavigateToInitialPage<HomeController, HomePage>(x => x.Index());
    }        

    private void WhenIChooseToAddTheNewRoyal()
    {
        var royal = new AddRoyaltyModel
        {
            Name = this.Name,
            RegnalRomanNumeral = this.Number
        };

        _confirmationPage = _home.CreateRoyalty(royal);
    }

    private void ThenIShouldSeeAConfirmationOfTheNewRoyalHavingBeenAdded()
    {
        Assert.Equal("Created ok", _confirmationPage.Title);
    }
}

Notice in the preceding code that even though we don’t care about the Regnal number we are still supplying it in the examples. We could just set it manually to a hardcoded value, and in this simple example that might be ok, but if we had a form with many fields then this  will introduce extra work and may make the test less “refactor-safe”.

The following code shows the removal of the Regnal name/number:

public class AddRoyaltyTestsUsingAutoFixture
{
    private HomePage _home;
    private CreatedPage _confirmationPage;
    public string Name { get; set; }

    [Fact]
    public void ShouldAddRoyaltiesWithDifferentNames()
    {
        this.Given(x => GivenIAmStartingANewRoyalAddition())
            .And("And I have entered <name> as the royalty name")
            .When(x => WhenIChooseToAddTheNewRoyal())
            .Then(x => ThenIShouldSeeAConfirmationOfTheNewRoyalHavingBeenAdded())
            .WithExamples(new ExampleTable("name")
                          {
                              "Richard",
                              "Henry",
                              "Elizabeth"
                          })
            .BDDfy();            
    }

    private void GivenIAmStartingANewRoyalAddition()
    {
        _home = Host.Instance.NavigateToInitialPage<HomeController, HomePage>(x => x.Index());
    }        

    private void WhenIChooseToAddTheNewRoyal()
    {
        var fixture = new Fixture();

        // Use AutoFixture to create anonymous data for all properties except
        // name which is set to the BDDfy example value
        var royal = fixture.Build<AddRoyaltyModel>()
            .With(x => x.Name, this.Name)
            .Create();

        _confirmationPage = _home.CreateRoyalty(royal);
    }

    private void ThenIShouldSeeAConfirmationOfTheNewRoyalHavingBeenAdded()
    {
        Assert.Equal("Created ok", _confirmationPage.Title);
    }
}

In this version, AutoFixture’s Build method is being used to automatically generate test data for all the fields, except the royal name which is set to the name(s) specified in the BDDfy examples.

Running this test results in the following automation:

SelenoAutofixture

 

And produces the following HTML BDDfy report:

image

The ConditionalWeakTable in .NET

The ConditionalWeakTable class exists in the System.Runtime.CompilerServices namespace and as its namespace suggests is used in compilation processes.

The class allows a key-value pair to be stored (using its Add method), once the key object no longer has any references outside of the ConditionalWeakTable the key can be destroyed during garbage collection as the key is held as a weak reference inside the table, as opposed to a usual strong reference. At this point the key object can be garbage collected. Also at this point, if the value object also has no other references, it too can be collected. Or too quote MSDN: “It does not persist keys. That is, a key is not kept alive only because it is a member of the collection”.

The following code shows a console application followed by its output:

using System;
using System.Runtime.CompilerServices;

namespace ConditionalWeakTableExample
{
    class Program
    {
        static void Main(string[] args)
        {
            var cwt = new ConditionalWeakTable<SomeKeyClass, SomeValueClass>();

            Console.WriteLine("Creating new instance of SomeKeyClass called key1");
            var key1 = new SomeKeyClass();

            Console.WriteLine("Creating new instance of SomeValueClass called value1");
            var value1 = new SomeValueClass();

            Console.WriteLine("Creating variable anotherReferenceToKey1 referencing key1");
            var anotherReferenceToKey1 = key1;

            Console.WriteLine("Adding key1, value1");
            cwt.Add(key1, value1);




            Console.WriteLine("Press a key to set key1 to null");
            Console.ReadLine();
            key1 = null;
            Console.WriteLine("key1 to null");

            ForceGc();




            Console.WriteLine("Press a key to set anotherReferenceToKey1 to null");
            Console.ReadLine();
            anotherReferenceToKey1 = null;
            Console.WriteLine("anotherReferenceToKey1 to null");

            ForceGc();            




            Console.WriteLine("End of program - press any key to exit");
            Console.ReadLine();
        }


        private static void ForceGc()
        {
            Console.WriteLine("Forcing garbage collection and waiting for finalizers");
            GC.Collect();
            GC.WaitForPendingFinalizers();
        }
    }


    class SomeKeyClass
    {
        ~SomeKeyClass()
        {
            Console.ForegroundColor = ConsoleColor.Red;
            Console.WriteLine("****** SomeKeyClass Destroyed");
            Console.ResetColor();
        }        
    }

    class SomeValueClass
    {
        ~SomeValueClass()
        {
            Console.ForegroundColor = ConsoleColor.Red;
            Console.WriteLine("****** SomeValueClass Destroyed");
            Console.ResetColor();
        }
    }
}

image

 

So here, even though the cwt contains an entry using key1, it is held in a weak way so it will not prevent garbage collection.

Also notice in this example, the value object has not been destroyed as we still have a reference to it in the variable value1.

If we change the code to also set value1 to null, when the Garbage Collector runs it will destroy the key object as before, but now there are also no references to the value object, so it too can be destroyed:

static void Main(string[] args)
{
    var cwt = new ConditionalWeakTable<SomeKeyClass, SomeValueClass>();

    Console.WriteLine("Creating new instance of SomeKeyClass called key1");
    var key1 = new SomeKeyClass();

    Console.WriteLine("Creating new instance of SomeValueClass called value1");
    var value1 = new SomeValueClass();

    Console.WriteLine("Creating variable anotherReferenceToKey1 referencing key1");
    var anotherReferenceToKey1 = key1;

    Console.WriteLine("Adding key1, value1");
    cwt.Add(key1, value1);




    Console.WriteLine("Press a key to set key1 to null");
    Console.ReadLine();
    key1 = null;
    Console.WriteLine("key1 to null");

    ForceGc();




    Console.WriteLine("Press a key to set anotherReferenceToKey1, value1 to null");
    Console.ReadLine();
    anotherReferenceToKey1 = null;
    value1 = null;
    Console.WriteLine("anotherReferenceToKey1 & value1 to null");

    ForceGc();            




    Console.WriteLine("End of program - press any key to exit");
    Console.ReadLine();
}

 

image

 

So even though this is not a class we’d use in everyday coding, it’s one of the many interesting things in .NET that are hidden away in namespaces we don’t usually use. It also should be noted that it doesn’t really behave as a “normal” dictionary, for example it doesn’t contain GetEnumerator method.

To learn some cool C# Tips, check out my free C# Tips eBook or my Pluralsight C# Tips and Traps course.

Beyond Simple Asserts with ApprovalTests

In a test, we are often testing (asserting) individual items such as an (int) age is correct or a string matches an expected value.

If we are practicing test-first development we’ll write our asserts first.

Approval tests allow us to go beyond simple asserts.

What if the thing we’re checking is not a simple value, for example that a pie chart image matches the input data? Or what if we want to use our human judgement to decide when something looks correct, something that is hard to codify in one or more basic asserts?

ApprovalTests for .NET can be install via NuGet. Once installed, it gives us a whole new world when it comes to checking the output of code.

For example, say we are developing a class to represent a stickman. We want to be able to tell an instance to raise left arm or raise right leg for example.

Example of Using Approval Tests

So lets start with a test:

[Fact]
[UseReporter(typeof(DiffReporter))]
public void ShouldHaveDefaultPosture()
{
    var sut = new StickMan();

    Approvals.Verify(sut);
}

And an empty StickMan:

public class StickMan
{        
}

Here we’re using xUnit.net (the [Fact] attribute) but you could be using NUnit for example.

The first thing to notice here is there is no traditional Assert method, instead we’re using Approval Tests to verify the state of the system under test (sut).

The other think to notice is the [UseReporter] attribute that tells Approval Tests to use a diff tool to display errors when a test fails.

If we run this test, we’ll get a diff tool opened:

More...

New Open Source Project–Named Colors

I’ve been tinkering with an idea for a new open source project called NamedColors.

As its name suggests, it’s a list of color values (hex RGB) with associated names. In addition, a number of related “emotions” can be associated with each color.

A Named Color is defined as:

<NamedColor>
    <Name>MetroUITeal</Name>
    <RGB>00aba9</RGB>
    <Emotions>
    </Emotions>
</NamedColor>

You can see the current (short) list on GitHub.

The idea is to create a number of projections for use in different programming languages / platforms. For example CSS, Sass, and .NET PCL.

The project is in its early stages at the moment, and I’m not sure what applications people will find for it – it will be interesting to see what happens.

Projections are created using T4 templates.

There are other projections planned, such as a XAML dictionary of colors and brushes.

If anyone has any other ideas for projections feel free to add an issue or send me a pull request – also for adding other named colors.

Eventually for .NET there will be a NuGet PCL available containing all the named colors and way to say “give me a sad color”, etc.

An Overview of Structured Logging with Serilog

Traditional logging techniques (such as writing lines of text to files) results in the loss of structure and semantics.

Structured logging enables richer, more semantic, structured log data to be created. But more importantly queried.

Serilog is an open source logging library that facilitates this structured logging.

Serilog can be used in the traditional way, for example writing to files, but it is designed to allow capture of structured data.

There are multiple provided “sinks” that route log data to a store; from unstructured data stores such as text files (single and rolling) to structured stores such as RavenDB. Multiple sinks can be configured so the same log event is written to both stores.

Writing to multiple sinks with Serilog

To create structured data, the logging code looks slightly different from traditional (unstructured) logging code. Once the logger is configured, to log an information level event we could write something like the following:

Log.Information("Log in succeeded for {UserId}. Authentication service took {LogInMilliseconds}.", userId, responseTime);

Here, a log event is being written that contains two pieces of structured, sematic data: UserId and LogInMilliseconds. If this message is written to an unstructured source (such as text file) then a simple string will be written. If a structured sink is used then the individual data items will be stored as well.

This means that this structured information can be richly queried, for example queries such as: “show me all the logins for user 42 where the login time exceeded 200ms” or “show me all the logins that took more than 1000ms”.

Check out the Serilog site for more info or my Modern Structured Logging With Serilog and Seq Pluralsight course.

Parsing Command Line Arguments with Command Line Parser Library

When writing .Net console applications we often need to parse command line arguments that the user specified when launching the application.

We get these arguments passed into the program in the args parameter of Main()

static void Main(string[] args)

If our application only has a single simple parameter then it’s probably ok to just parse it ourselves.

Once the number and type of parameters increase then there’s a whole host of complexity that can creep in:

  • What if values need converting to enum values?
  • How to handle arguments that takes a list of values?
  • How to implement verb style arguments like “git push”?
  • What if parameters are in different order?
  • What about optional parameters and should we use default values if they’re not supplied?
  • What about arguments that are mutually exclusive?

While we can program our console applications to account for these things it could be quite a lot of work and testing to implement effectively.

It makes sense in these cases to use a ready-built library such as Command Line Parser Library.

Command Line Parser Library Basics

This library represents arguments by creating a class and decorating its properties that represent args with the [Option] attribute.

class SomeOptions
{
    [Option('n', "name", Required=true)]
    public string Name { get; set; }

    [Option('a', "age")]
    public int Age { get; set; }
}

Here this class is stating that we should always have a name argument (Required=true) and we can specify it at the command line with the shorthand “-n” or longer --name”.

The age argument is optional and can be specified with “-a” or --age”.

So from the command line we could type:

myconsoleapplication.exe -n Jason --age 99

In our Main method we can now parse these arguments into  an instance of our SomeOptions class.

static void Main(string[] args)
{
    var options = new SomeOptions();

    CommandLine.Parser.Default.ParseArguments(args, options);

    // options.Name will = Jason
    // options.Age will = 99
}

The ParseArguments method takes the array of string args from the command line and populates our SomeOptions instance which we can then use in a strongly typed way.

There’s a lot more to this library such as implementing verb style arguments, strict parsing, and creating help text, all of which I cover in my Pluralsight Building .NET Console Applications in C# course.

Introducing JS Name-O-Tron – Find a Name for Your JavaScript Library

As a Microsoft MVP I get free Azure credits to use every month, so I thought I’d better start making use of them :)

screenshot of JS Name-O-Tron application on Azure

JS Name-O-Tron is the first web site I’ve deployed to Azure and I’m pleased to say it was crazy-easy :)

It generates a random word and adds “.js” to it – you can then check if there’s an existing library with that name (GitHub, CodePlex, and NuGet).

I used Visual Studio 2013 to create a new ASP.Net application and chose MVC (v5) which resulted in a Bootstrapped site with a default Home controller and views.

More...

New Pluralsight Course: SpecFlow Tips and Tricks

My latest Pluralsight course was released today: SpecFlow Tips and Tricks is a short course to help those who are relatively new to SpecFlow and those who have been using it for a while and want to create more maintainable testing solutions.

The course focuses on 3 main areas:

  • Steps and Bindings
  • Hooks and Scoped Bindings
  • Step Parameters and Data Tables

This course is a loose follow-up to my previous Automated Acceptance Testing with SpecFlow and Gherkin course that covers the Gherkin DSL and other fundamental SpecFlow topics.

You can check out the course on the Pluralsight website or on my author page.

Handling CTRL-C in .NET Console Applications

By default, pressing CTRL-C while a console application is running will cause it to terminate.

If we want to prevent this we can set Console.TreatControlCAsInput Property to true. This will prevent CTRL-C from terminating the application. To terminate now, the user needs to close the console window or hit CTRL-BREAK instead of the more usual and well-known CTRL-C.

class Program
{
    private static void Main(string[] args)
    {
        Console.TreatControlCAsInput = true;
        while (true)
        {
        }
    }
}

There is also the Console.CancelKeyPress event. This event is fired whenever CTRL-C or CTRL-BREAK is pressed. It allows us to decide whether or not to terminate the application.

More...