Testing That Your Public APIs Have Not Changed Unexpectedly with PublicApiGenerator and Approval Tests

We can write automated tests to cover various aspects of the code we write. We can write unit/integration tests that test that the code is producing the expected outcomes. We can use ConventionTests to ensure internal code quality, for example that classes following a specified naming convention and exists in the correct namespace. We may even add the ability to create a business readable tests using tools such as SpecFlow or BDDfy.

Another aspect that we might want to ensure doesn’t change unexpectedly is the public API that our code exposes to callers.

Using PublicApiGenerator to Generate a Report of our Public API

The first step of ensuring our public API hasn’t changed is to be able to capture the public API in a readable way. The PublicApiGenerator NuGet package (from Jake Ginnivan) gives us this ability.

Suppose we have the following class defined:

public class Calculator
{
    public Calculator()
    {
        CurrentValue = 0;
    }

    public int CurrentValue { get; private set; }

    public void Clear()
    {
        CurrentValue = 0;
    }

    public void Add(int number)
    {
        CurrentValue += number;
    }
}

Notice here that this code defines the public API that consumers of the Calculator class can use. It’s this public API that we want to test to ensure it doesn’t change unexpectedly.

We might start with some unit tests as shown in the following code:

public class CalculatorTests
{
    [Fact]
    public void ShouldHaveInitialValue()
    {
        var sut = new Calculator();

        Assert.Equal(0, sut.CurrentValue);
    }

    [Fact]
    public void ShouldAdd()
    {
        var sut = new Calculator();

        sut.Add(1);

        Assert.Equal(1, sut.CurrentValue);
    }
}

These tests help us ensure the code is doing the right thing but do not offer any protection against the public API changing. We can now add a new test that uses PublicApiGenerator to generate a string “report” detailing the public members of our API. The following test code shows this in use:

[Fact]
public void ShouldHaveCorrectPublicApi()
{
    var sut = new Calculator();

    // Get the assembly that we want to generate the public API report for
    Assembly calculatorAssembly = sut.GetType().Assembly;

    // Use PublicApiGenerator to generate the API report
    string apiString = PublicApiGenerator.PublicApiGenerator.GetPublicApi(calculatorAssembly);

    // TODO: assert API has not changed
}

If we debug this test and look at the content of the apiString variable we’d see the following text:

[assembly: System.Runtime.InteropServices.ComVisibleAttribute(false)]
[assembly: System.Runtime.InteropServices.GuidAttribute("c2dc3732-a4a5-4baa-b4df-90f40aad1c6a")]
[assembly: System.Runtime.Versioning.TargetFrameworkAttribute(".NETFramework,Version=v4.5.1", FrameworkDisplayName=".NET Framework 4.5.1")]

namespace Demo
{
    
    public class Calculator
    {
        public Calculator() { }
        public int CurrentValue { get; }
        public void Add(int number) { }
        public void Clear() { }
    }
}

Using Approval Tests to Assert the API Is Correct

Now in our test we have a string that represents the public API. We can combine PublicApiGenerator with the Approval Tests library to check that this API text doesn’t change.

First off we go and install the Approval Tests NuGet Package. We can then modify the test as shown below:

public class CalculatorApiTests
{
    [Fact]
    public void ShouldHaveCorrectPublicApi()
    {
        var sut = new Calculator();

        // Get the assembly that we want to generate the public API report for
        Assembly calculatorAssembly = sut.GetType().Assembly;

        // Use PublicApiGenerator to generate the API report
        string apiString = PublicApiGenerator.PublicApiGenerator.GetPublicApi(calculatorAssembly);

        // Use Approval Tests to verify the API hasn't changed
        Approvals.Verify(apiString);
    }
}

The first time we run this it will fail with a message such as “Failed Approval: Approval File "c:\…\Demo.Tests\CalculatorApiTests.ShouldHaveCorrectPublicApi.approved.txt" Not Found”. It will also generate a file called CalculatorApiTests.ShouldHaveCorrectPublicApi.received.txt. We can rename this to CalculatorApiTests.ShouldHaveCorrectPublicApi.approved.txt, run the test again and it will pass.

If we now modify the public API by changing a method signature (e.g. to public void Clear(int someParam)) and run the test again it will fail with a message such as “Received file c:\...\Demo.Tests\CalculatorApiTests.ShouldHaveCorrectPublicApi.received.txt does not match approved file c:\...\Demo.Tests\CalculatorApiTests.ShouldHaveCorrectPublicApi.approved.txt”.

Modifying the test and adding an Approval Tests reporter attribute ([UseReporter(typeof(DiffReporter))]) and running the test will now gives us a visual diff identifying the changes to the public API as shown in the following screenshot.

Approval Tests Diff Screenshot

To learn more about the features of Approval Tests, check out my Approval Tests for .NET Pluralsight course.

Pingbacks and trackbacks (2)+

Add comment

Loading