Hook Execution Order in SpecFlow 2

SpecFlow hooks allow additional code to be executed before and after various stages of the test execution lifecycle, for example running additional setup code before each scenario executes.

If there are multiple of the same type of hook specified, by default the execution order of the hook methods is unspecified. For example the following code has three [BeforeStep] hook methods that could be executed in any order before every step of the scenario executes:

[BeforeStep]
public void BeforeHook1()
{
}

[BeforeStep]
public void BeforeHook2()
{
}

[BeforeStep]
public void BeforeHook3()
{
}

To ensure these hook methods are executed in a specified order, the hook attributes allow an optional order to be specified. When there are multiple of the same hook methods defined, the lowest order values execute before the higher order methods:

[BeforeStep(Order = 100)]
public void BeforeHook1()
{
}

[BeforeStep(Order = 200)]
public void BeforeHook2()
{
}

[BeforeStep(Order = 300)]
public void BeforeHook3()
{
}

The values of the Order property are arbitrary, you may use whatever values you wish, though it is sensible to allow some “wriggle room” for future additional steps by working in increments of 10 or 100 for example.

The following code illustrates another example where the execution order of hooks is important; the database should be reset first before test users are added:

[Binding]
public class Hooks
{
    [BeforeScenario(Order = 100)]
    public void ResetDatabase()
    {
    }

    [BeforeScenario(Order = 200)]
    public void AddTestUsersToDatabase()
    {
    }        
}

To see hook ordering in action, check out my Pluralsight course: Business Readable Automated Tests with SpecFlow 2.0.

You can start watching with a Pluralsight free trial.

SHARE:

New Pluralsight Course: Business Readable Automated Tests with SpecFlow 2.0

My newest Pluralsight course was just published. Business Readable Automated Tests with SpecFlow 2.0 teaches how to create tests that the business can read, understand, and contribute to. These “English-like” tests (other spoken languages are supported) can be executed by writing test code that is associated with the “English-like” steps. Because the tests sit alongside the source code, they can become living (executable) documentation for the system, as opposed to an out-of-date Word document somewhere on the network for example. Check out the course here.

You can start watching with a Pluralsight free trial.

SHARE:

A Feature Based Approach to Organising Test Code in BDDfy and Other Testing Frameworks

We want our test code to be as high quality as possible, this means smaller amounts of code duplication, reasonably easy to find where things are in Visual Studio, etc.

One possible organization structure is to think in terms of the individual features in the application. The approach you take will probably depend on the complexity and size of the test suite, system under test, etc. Because BDDfy is "just code" we can use all the normal techniques of composition and inheritance that we'd use in our production code to get to the right level of code reuse and organization for the application we're testing.

Organisation by Feature

Organising by feature enables a reasonable amount of code reuse between test scenarios and it also helps to think user- or business-first rather than code/implementation first.

So for example, if we’re using BDDfy to test a banking application we might have the following features:

  • Login
  • Logout
  • Move Money
  • Pay Bills
  • View Transactions
  • etc

Each of these features contains a number of scenarios, for example Login would probably contain scenarios for successful login, bad password, locked out account, 2 factor login, etc.

In Visual Studio we could create folders in the test project to represent and organize these features as the following screenshot illustrates.

Visual Studio feature folders

 

So a (cut down) Login BDDfy story class could look like the following code:

namespace Tests.Login
{
    [TestFixture]
    [Story(AsA="As a Customer",
        IWant = "I want to login",
        SoThat = "So that I can manage my accounts and money")]
    public class CustomerLogin
    {
        [Test]
        public void LoginSuccess()
        {
            this.Given(x => GivenIAmOnTheLoginScreen())
                .And(x => x.AndIHaveEnteredMyUsername())
                .And(x => AndIHaveEnteredMyPassword())
                .When( x=> WhenIChooseLogin())
                .Then(x => ThenIShouldBeLoggedIn())
                .BDDfy<CustomerLogin>();
        }

        public void GivenIAmOnTheLoginScreen()
        {
        }

        public void AndIHaveEnteredMyUsername()
        {
        }

        public void AndIHaveEnteredMyPassword()
        {
        }

        public void WhenIChooseLogin()
        {
        }

        public void ThenIShouldBeLoggedIn()
        {
        }
    }
}

Now for arguments sake, say we have a Navigation story class that represents how the user should be able to move around the applications features.

We could reuse the individual given/when/then methods in CustomerLogin but we don’t want our navigations scenarios to be bloated, we want them to represent the essence of the scenario with the right level of detail.

So the first thing we could do is to create a “step aggregation” method in CustomerLogin as follows:

public void GivenIHaveLoggedIn()
{
    GivenIAmOnTheLoginScreen();
    AndIHaveEnteredMyUsername();
    AndIHaveEnteredMyPassword();
    WhenIChooseLogin();
}

This method simply re-uses the existing steps but aggregates them into a method we can call from the navigation tests:

using NUnit.Framework;
using TestStack.BDDfy;
using TestStack.BDDfy.Core;
using Tests.Login;
using TestStack.BDDfy.Scanners.StepScanners.Fluent;

namespace Tests
{
    [TestFixture]
    [Story(AsA="As a Customer",
        IWant = "I want to navigate around the site",
        SoThat = "So that I can get to the features I want to use")]
    public class Navigation
    {
        [Test]
        public void NavigateToMoveMoney()
        {
            var custLogin = new CustomerLogin();

            this.Given(x => custLogin.GivenIHaveLoggedIn())
                .When(x => WhenChooseGotoMoveMoney())
                .Then(x => ThenIShouldBeTakenToTheMainMoveMoneyScreen())
                .BDDfy<Navigation>();
        }

        private void ThenIShouldBeTakenToTheMainMoveMoneyScreen()
        {            
        }

        private void WhenChooseGotoMoveMoney()
        {            
        }
    }
}

So here were are making use of this aggregate method from the CustomerLogin feature class.

If we don’t need to represent the fact that the customer is logged-in in the report and all the tests in the class assume a logged-in user, we could use some (e.g. NUnit) test setup code that logs the user in but doesn’t get reported.

The HTML output of this looks as follows:

BDDfy HTML report

 

While in these examples we have a single story class for the feature (e.g. CustomerLogin) once we start adding scenarios (and steps) this single story class might become too bloated. If this is deemed a problem then we can break it out into sub features/stories or if it’s applicable we could use inheritance to hold common given/when/then steps. The individual story classes relating to the customer login feature would all inherit this base class. We probably however, do not want multiple levels of nested inheritance in our stories as this may make maintenance and discoverability harder.

To see more of what BDDfy can do check out my Building the Right Thing in .NET with TestStack Pluralsight course, head on over to the documentation, or check it out on GitHub

SHARE:

Business-Readable, Living Documentation with BDDfy

BDDfy enables the creation of tests that, in addition to verifying that the system works correctly, also results in business-readable, living documentation.

Business-readable means that the tests are described in natural language (e.g. English) that the business can read, understand, and ensure that the correct features and functionality is being built.

Living documentation means that the report results directly from the passing or failing of the tests. It’s not a word document somewhere on a shared drive or SharePoint site that may or may not actually be in sync with what the system actually does.

The Report

Below is an example of what a typical BDDfy HTML report looks like (there is a “metro” inspired report coming in V4). There’s also the ability to output the test report in markdown.

BDDfy HTML report

Notice that it’s not code-centric output, but rather business-centric.

Here the two test scenarios are grouped into a story, but they don’t have to be.

The underlying test framework that is used to execute the test doesn’t matter – you could use NUnit, xUnit.net, MSTest, etc.

The Test Code

The tests that produce this report could be configured in BDDfy in a couple of ways. There is a reflective style that uses methods that following a specific naming convention. There is also the fluent style.

The test code to produce this report looks like the below (we are using NUnit in this example).

using NUnit.Framework;
using TestStack.BDDfy;
using TestStack.BDDfy.Core;
using TestStack.BDDfy.Scanners.StepScanners.Fluent;

namespace BDDfyDemo
{
    [TestFixture]
    [Story(AsA = "As a customer",
        IWant = "I want my order total to add up correctly",
        SoThat = "I'm not overcharged for my goods")]
    public class OrderTotalCalculatorTests
    {
        [Test]
        public void MultipleOrderedItemsTotals()
        {
            this.Given(x => GivenIHaveAddedItemsToMyCart())
                .When(x => WhenICheckout())
                .Then(x => ThenTheOrderTotalExcludingTaxShouldBeCorrect())
                .BDDfy<OrderTotalCalculatorTests>();
        }

        [Test]
        public void SalesTaxAdded()
        {
            this.Given(x => GivenIHaveAddedItemsToMyCart())
                .When(x => WhenICheckout())
                .Then(x => ThenTheSalesTaxShouldBeCorrect())
                .BDDfy<OrderTotalCalculatorTests>();
        }

        public void GivenIHaveAddedItemsToMyCart()
        {
            // test code
        }

        public void WhenICheckout()
        {
            // test code
        }

        public void ThenTheOrderTotalExcludingTaxShouldBeCorrect()
        {
            // test code
        }

        public void ThenTheSalesTaxShouldBeCorrect()
        {
            // test code
        }

    }
}

Here there are a couple of NUnit tests defined – the methods with the [Test] attribute applied to them.

Within these test methods the BDDfy fluent style is being used to define the different steps in the test scenarios.

The “given” phase sets up the initial context or state of the thing being tested. The “when” phase acts upon the system to produce some change. The “then” phase is typically where we have assert code, it’s in this phase that the resulting state of the system is checked.

Notice how the individual method names appear in the test report in a nice business-readable way.

 

There’s a lot more to BDDfy, such as data-parameterised tests and a whole heap of customisation and configuration options. To see more of what BDDfy can do check out my Building the Right Thing in .NET with TestStack Pluralsight course, head on over to the documentation, or check it out on GitHub.

SHARE:

3 Ways to Pass State Between SpecFlow Step Definitions

Sometimes we need one step definition to know about parameter data that was passed to previous steps.

There’s 3 ways main ways to do this, each with various considerations.

Private Field in Binding Class

This is the simplest approach. Simply add a private field to your [Binding] class containing your step definitions.

In a step, just grab the parameter data and store it in this private field.

In later steps, retrieve the data from this private field.

This approach is simple but breaks down when we start to refactor our step definitions into multiple step definition classes; the private field data is not accessible between steps in different binding classes.

ScenarioContext

We can store data for the current executing scenario using the ScenarioContext class.

There's a number of ways to use it, but essentially it’s a dictionary that we can store arbitrary data and retrieve it by a key:

ScenarioContext.Current["age"] = 42;

This approach can be used even if we refactor step definitions out across multiple binding classes. The scenario context is shared between all steps for the lifetime that a scenario is executing.

This approach can start to get a little ugly, we also have to make sure our dictionary keys are correct in all the steps where we set or retrieve data.

By default, it’s also weakly-typed – the dictionary just stores objects so we can end up with casts every time we retrieve data.

Context Injection

The third method (which I wrote about previously) lets us take a dependency injection style approach, and define POCOs to represent the data (in a strongly typed way) that automatically gets injected into each of our binding classes.

Like ScenarioContext, this approach also works across multiple binding classes. Unlike ScenarioContext, we don’t have to worry about dictionary keys or casting.

 

If you’re new to SpecFlow and Gherkin, check out my Pluralsight course:  Automated Acceptance Testing with SpecFlow and Gherkin or if you understand the basics or have been using it for a while, check out  SpecFlow Tips and Tricks course to learn how to create more maintainable SpecFlow test automation solutions.

If you want to fill in the gaps in your C# knowledge be sure to check out my C# Tips and Traps training course from Pluralsight – get started with a free trial.

SHARE:

SpecFlow Cheat Sheet

SpecFlow is a tool that allows the writing of business-readable tests that can then be automated in code. If you’re new to SpecFlow check out my Pluralsight course or the resources page.

The cheat sheet below shows the basics of different step binding styles, the hooks that can be used to execute additional code, and scoped bindings.

More...

SHARE:

Advanced SpecFlow: Custom Conversion of Step Parameters and Data Tables with [StepArgumentTransformation]

SpecFlow is a tool that allows the writing of business-readable tests that can then be automated in code. If you’re new to SpecFlow check out my Pluralsight course or the resources page to get up to speed before looking at these more advanced topics.

SpecFlow will attempt to perform some conversions of step arguments as specified in the documentation.

We can also tell SpecFlow to use our own custom conversions. Take the feature below:

Feature: SomeFeature

Scenario: Update User Password
    Given The original user was created over 10 days ago
    When I update the users password to "some password"
    Then I should see the following errors
        | ErrorCode         | ErrorDescription          |
        | 442               | Out of date user          |
        | 28                | Changes were not saved    |

From this we generate some basic step definitions:

[Given]
public void Given_The_original_user_was_created_over_DAYS_days_ago(int days)
{
}

[When]
public void When_I_update_the_users_password_to_NEWPASSWORD(string newPassword)
{
}
       
[Then]
public void Then_I_should_see_the_following_errors(Table table)
{            
}

Automatically Parsing 10 Days Ago into a DateTime

In the Given step we get an int specifying how many days ago the user was created. As it’s the Given step we need to put the system into a state where the user creation date, for example held as a DateTime in the user database, is 10 days old. If this is just a single step then we can simply write the code to subtract a number of days from todays date in the step itself. Note: this kind of date based testing where we rely on “now” may prove brittle, imagine the a Given ran just before midnight, but the Then gets executed after midnight, i.e. the next day.

More...

SHARE:

Gherkin Cheat Sheet

Gherkin is a Business Readable Domain Specific Language. It allows the documentation of what a system should do in natural language (multiple languages are supported) and allows test automation code to be written for the system’s features.

This cheat sheet outlines the language basics.

More...

SHARE:

Advanced SpecFlow: Restricting Step Definition and Hook Execution with Scoped Bindings

SpecFlow is a tool that allows the writing of business-readable tests that can then be automated in code. If you’re new to SpecFlow check out my Pluralsight course or the resources page to get up to speed before looking at these more advanced topics.

Step definitions and hooks by default have global scope within the test project.

For example, take the following feature:

Feature: SomeFeature

Scenario: Scenario 1
    Given A
    When B
    Then C

Scenario: Scenario 2
    Given A
    When X
    Then Z

Here the “Given A” step shares a step definition, note in the following code there is only one step that matches “Given A”:

[Binding]
public class SomeFeatureSteps
{
    [Given]
    public void Given_A()
    {
        // etc.
    }       

    [When]
    public void When_B()
    {
        // etc.
    }
    
    [When]
    public void When_X()
    {
        // etc.
    }
    
    [Then]
    public void Then_C()
    {
        // etc.
    }
    
    [Then]
    public void Then_Z()
    {
        // etc.
    }
}

If for some reason we want different automation code to run for each of the “Given A” steps, we could simply reword one of the steps, then we would have two different step definitions.

More...

SHARE: